YouTubeやってます
算国理社
PR

四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数-ならべ方-クイックラーニング

中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方
yamada
記事内に商品プロモーションを含む場合があります

予習シリーズ5年前期で「場合の数」を学びます。「場合の数」のうち、11回では「ならべ方」を、12回では「組み合わせ方」を扱います。

やまだ先生
やまだ先生

「場合の数」と言えば、中学生のときに「確率」ってやったわ。

つむぎママ
つむぎママ

よく覚えていますね。ただ「場合の数」と「確率」はちょっと違います。

「場合の数」は、例えば、「4人の生徒(A, B, C, Dとします)から3人を選んでチームを作る場合、何通りのチームが作れるか」というように、「どれだけの異なる選び方が存在するか」を数えます

対して「確率」は、例えば、「4人の生徒(A, B, C, Dとします)がいるとして、彼らがランダムに名前を書いた帽子から自分の名前を引くというゲームをするとき、全員が自分の名前を引く確率はどれくらいか」というように、「特定の事象が起こる確率」を計算します

やまだ先生
やまだ先生

分かったわ。中学受験では「どれだけの異なる選び方が存在するか」を数えればいいのね。

つむぎママ
つむぎママ

はい、そうです。では、さっそく問題を見ていきましょう!

やまだ先生
やまだ先生

予習シリーズ算数 場合の数(ならべ方) 例題1

中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題1‐1

例題1のポイントは「大小2つのさいころを同時にふる」です。このように問われたら、反射的に下のような図を書きましょう。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題1‐2

大きいさいことと小さいさいころの目の組み合わせが全部で36通りあるってことね。

つむぎママ
つむぎママ

そうです! この図を書いてから、条件を確認しましょう。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題1‐4

出た目の合計が4以下」とあるから、( 1,1 )( 1, 2 )( 2, 1 )… というふうに順々に調べていけばいいのね。

つむぎママ
つむぎママ

そうです!では、調べていきましょう。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題1‐3
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題1‐5
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題1‐6
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題1‐7

出た目の合計が4以下とありますから、ここで打ち止めですね。答えは何通りになりますか?

やまだ先生
やまだ先生

かんたんだわ! 6通り!

つむぎママ
つむぎママ

その通りです! 図を書くといろいろと応用がききますよ。

やまだ先生
やまだ先生

予習シリーズ算数 場合の数(ならべ方) 例題2

例題2に進みましょう。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐1

目が回りそうだわ…

つむぎママ
つむぎママ

大丈夫ですよ! 問題に「遠回りせずに」って書いて書いてありますから、進み方は「上」または「右」だけです。

テクニックを覚えようとする人もいますが、あまり感心しません。この問題は、途中の道が通れないというパターンもありますから、途中経過をしっかり理解しましょう。

まず、下の図で、P地点からA地点に行く道順は何通りありますか?

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐2

これはかんたんだわ。右回りと左回りで2通りね。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐3

はい、そのとおりです。下の図のように「1+1=2(通り)」と求められることを確認してください。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐4

次に、下の図で、P地点からB地点に行く道順は何通りありますか?

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐5

下の図の黄、赤、青の線だから、3通りね!

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐6

おおっ、その通りです! 下の図のように「1+2=3(通り)」と求められることを確認してください。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐7

次に、下の図で、P地点からC地点に行く道順は何通りありますか?

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐8

B地点と同じように考えられるから、3通り!

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐9

よく見抜きましたね! ここでも、下の図のように「1+2=3(通り)」と求められることを確認してください。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐10

次に、下の図で、P地点からD地点に行く道順は何通りありますか?

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐11

下の図のように、C地点から上に上がればいいから、ここでも3通りかしら?

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐12

惜しいです! 下の図のように、B地点からの道順もありますよ。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐13

そうだったわ。そうすると、P地点からD地点に行く道順は6通りなのね。

つむぎママ
つむぎママ

その通りです! 下の図のように、下の図のように「3+3=6(通り)」と求められることを確認してください。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐14

次に、下の図で、P地点からE地点に行く道順は何通りありますか?

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐15

下の図のように、右下を通る方法もあるわ。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐16

そうですね。その通り方を加えて、4通りです。下の図のように「3+1=4(通り)」と求められることを確認してください。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐17

さあ、ここで最後です。P地点からQ地点に行く道順は何通りありますか?

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題2‐18

分かったわ! 6+4=10通りね!

つむぎママ
つむぎママ

正解です! おめでとうございます!

大事なことは、道順を具体的にイメージしながら解くことです。そうしないと、基本問題や練習問題を解くときに困ってしまいますから。

やまだ先生
やまだ先生

予習シリーズ算数 場合の数(ならべ方) 例題3

例題3(1)の解き方

次は、例題3(1)ですね。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題3‐1-1

具体的に考えていきましょう! 下の図で、A地点~B地点を赤い道を通ってC地点に行く方法は何通りありますか?

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題3‐1-2

B地点からC地点に行く道は4本あるから、4通りね。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題3‐1-3

そうですね! では、A地点~B地点を黄色い道を通ってC地点に行く方法は何通りありますか?

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題3‐1-4

この場合も、B地点からC地点に行く道は4本あるから、4通りね。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題3‐1-5

そうですね! そうすると、もう答えはでますか?

やまだ先生
やまだ先生

A地点~B地点を緑色の道を通ってC地点に行く方法も4通りだから、全部で、3×4=12通りね!

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題3‐1-7

正解です! A地点~B地点の道順は3通りで、B地点~C地点の道順は4通りなので、3×4=12(通り) と求めることができますね

やまだ先生
やまだ先生

例題3(2)の解き方

では、例題3(2)はどうでしょうか。例題3(2)は「行きに通った道を帰りに通らないでもどってくる」という設定です。

まず、(1)でやったように、A地点からC地点に行く道順は、3×4=12通りですね。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題3‐2-2

では、ここから引き返します。C地点からB地点にもどる道順は何通りありますか?

やまだ先生
やまだ先生

行きに通った道は通れないから、4-1=3通りね!

つむぎママ
つむぎママ

その通りです! 下の図のように考えればいいですよ。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題3‐2-3

そうすると、答えが出ませんか?

やまだ先生
やまだ先生

分かったわ! 3×4×3×2=72通りね。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題3‐2-4

正解です、おめでとうございます!

やまだ先生
やまだ先生

予習シリーズ算数 場合の数(ならべ方) 例題4

例題4(1)の解き方

さあ、ここから入試本番を意識した重要問題です。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題4‐1-1

ここからは「樹形図」を書いていきましょう。父、母、兄、妹を、それぞれA~Dとしますね。

やまだ先生
やまだ先生

「樹形図」って何でしたっけ?

つむぎママ
つむぎママ

下の図のように、木の枝のように伸ばしていく図ですよ。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題4‐1-2

思い出したわ! 一番左がAのとき、その右どなりの人がBまたはCまたはDということね。

つむぎママ
つむぎママ

そうです。では、この樹形図を完成させていきましょう!

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題4‐1-3
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題4‐1-4
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題4‐1-5

一番左の人がAのとき、4人のならび方は6通りですね。答えは全部で何通りですか?

やまだ先生
やまだ先生

一番左の人がB、C、Dのときも、それぞれ6通りずつあるのね。だから、4×3×2×1=24通りね。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題4‐1-6

正解です!

やまだ先生
やまだ先生

例題4(2)の解き方

では、例題4(2)はどうでしょう?

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題4‐2-1

これも樹形図で行けるわ!

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題4‐2-3
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題4‐2-4

なるほど! 一番左が父のときのならび方は、2×1×1=2通りになるのですね。

やまだ先生
やまだ先生

そうよ。一番左は母の場合もあるから、全部で2×2×1×1=4通りになるわ。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題4‐2-5

ずいぶん早く解けましたね! 樹形図を書いて上手に整理したおかげだと思います。

やまだ先生
やまだ先生

予習シリーズ算数 場合の数(ならべ方) 例題5

例題5(1)の解き方

例題5は整数の問題ですね。まず、例だ5(1)を見てみましょう。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐1-1

これも樹形図を書けばかんたんね。

つむぎママ
つむぎママ

そうですね。では、樹形図を完成させましょう!

注意が必要なのは、0は百の位の数字としてカウントしてはいけないということです。百の数字を0にしちゃうと、その数は3けたではなくて2けたになってしまいますから。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐1-2
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐1-3
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐1-4
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐1-5

百の位の数字が1のとき、3けたの数字は3×2=6通りできる、ってことですね。

やまだ先生
やまだ先生

はい。百の位の数字は、1のほか2または3も考えられるから、答えは3×3×2=18通りね。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐1-6

正解です!

やまだ先生
やまだ先生

例題5(2)の解き方

次に、例題5(2)です。これは少々手ごわいですよ。ポイントは「偶数」になるようにならべなければなりません

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐2-1

じゃあ、樹形図は書けないってこと?

つむぎママ
つむぎママ

いえいえ、この問題も樹形図で解決します。

ところで「偶数」というのはどのような数でしたか?

やまだ先生
やまだ先生

偶数って、1の位が0、2、4、6、8 になる数でしょ。

つむぎママ
つむぎママ

そうですね。だから、1の位から樹形図を書いていけばいいんです。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐2-2

なるほど。1の位が0または2になればいいのね。まずは、1に位が0になる場合を書いてみるわ。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐2-3
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐2-4
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐2-5

な~んだ、かんたんじゃない? 1の位が0のとき6通りある、だから1の位が2のときも6通り、答えは6×2=12通りでしょ。

つむぎママ
つむぎママ

いやいや、そうでもないんですよ。1の位が2の場合を書いてみますね

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐2-6
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐2-7
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐2-8

あっ、百の位が0になっちゃうと、2けたになってしまうのね!

つむぎママ
つむぎママ

そうなんですよ。選択肢に0がある場合は注意を必要なんです。樹形図の続きは次のようになりますね。答えは何通りですか?

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題5‐2-9

百の位が0になる場合を除いて、10通りが答えだわ。

つむぎママ
つむぎママ

その通りです。よくできました!

やまだ先生
やまだ先生

予習シリーズ算数 場合の数(ならべ方) 例題6

例題6(1)の解き方

例題6はぬり分けの問題です。まずは(1)の問題をみてみましょう。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題6‐1-1

これも樹形図でいけそうね。

つむぎママ
つむぎママ

はい、その通りです。じゃあ、樹形図を書いていきますね。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題6‐1-2

一番左のアのところが赤色の場合は、全部で3×2×1=6通りになるのね。なら、答えは、4×3×2×1=24通りね。

つむぎママ
つむぎママ

その通りです! スラスラ解けましたね。

やまだ先生
やまだ先生

例題6(2)の解き方

じゃあ、例題6(2)はどうでしょう? (1)とちがって、3色しか使えませんよ。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題6‐2-1

むむむ…

つむぎママ
つむぎママ

そんなに怖い顔しなくても…。コツが分かればかんたんですよ! 下の図のように、はなれた2か所が同じ色になればいいんです

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題6‐2-2

なるほどね~

つむぎママ
つむぎママ

はなれたところが同じ色になればいいんですけど、ほかにありませんか?

やまだ先生
やまだ先生

あるわ! アとエが同じ色になればいいのね。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題6‐2-3

そうです、まだありませんか?

やまだ先生
やまだ先生

まだあったわ! イとエが同じ色になればいいのね。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題6‐2-4

よく見つけましたね。これで、あとは樹形図を書いてオシマイです。赤=A、青=B、黄=C、緑=Dとして書きましょう。

やまだ先生
やまだ先生
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題6‐2-5

アとウが同じ色になるときは、4×3×2=24通りね。そうすると、ア=エ、イ=エの場合もそれぞれ24通りだから、答えは、3×4×3×2=72通りになるわ。

つむぎママ
つむぎママ
中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第11回 場合の数 ならべ方 例題6‐2-6

大正解です! おめでとうございます。

やまだ先生
やまだ先生

場合の数の問題は何となく難しいと思っていたけど、きちんと調べていけば何てことなかったわ。

つむぎママ
つむぎママ

そう思っていただけるとうれしいです! 次回は、場合の数のうち「組み合わせ方」をやりますね。

ここまでで質問がある方は、下のフォームからお願いします。

やまだ先生
やまだ先生


    This site is protected by reCAPTCHA and the Google
    Privacy Policy and
    Terms of Service apply.

    スポンサーリンク

    メールアドレスが公開されることはありません。 が付いている欄は必須項目です

    CAPTCHA


    ABOUT ME
    山田正(やまだ・ただし)
    山田正(やまだ・ただし)
    中学受験プロ講師・30年以上やってます
    YouTube「クイックラーニング」、学習塾「アカデミーワン」をやっています。中学受験で疑問や不安を抱えている方に、中学受験の本質にさかのぼって、ゆるぎない受験対策ができるようにお手伝いしています。
    【著書】「中学受験は親で決まる」(2008年)「優秀な子どもが中学受験で失敗する9の理由」(2010年)
    【AERA Kids取材】「9歳10歳の危機」(1012年夏号)、「学力の差は夏で決まる」(2013年秋号)
    記事URLをコピーしました