YouTubeやってます
算国理社
PR

四谷大塚 予習シリーズ 算数 徹底解説 5年上第8回 多角形の回転・転がり移動-クイックラーニング

中学受験 四谷大塚 予習シリーズ 算数 徹底解説 5年上第8回 多角形の回転・転がり移動 例題の解き方
yamada
記事内に商品プロモーションを含む場合があります

今回は、「多角形」の回転・転がり移動を見ていきますね。

やまだ先生
やまだ先生

回転・転がり移動だなんて、何だか楽しそうね。

つむぎママ
つむぎママ

はい、一度きちんと理解してしまえば、すぐに得意になる分野です。ですが、この分野できちんと得点できる生徒はそんなに多くありません。

得点できない原因は何かをしっかり説明していきますね!

やまだ先生
やまだ先生

予習シリーズ算数 多角形の回転・転がり移動 例題1

例題1(1)の解き方

まず、例題1(1)から見ていきましょう。下の図で、アの角度を求めます。

やまだ先生
やまだ先生

ポイントは、三角形ABCが二等辺三角形であることと、頂点Cを中心にして28°回転した、ということです。

この条件から、分かる値をどんどん書き込みましょう!

やまだ先生
やまだ先生

なるほど、カンタンだわ。条件から、青と赤の角度が分かるから、角アの大きさは、67-28=39°ね。

つむぎママ
つむぎママ

その通りです! この問題がなぜカンタンに解けたかというと、次の2点に注意したからなんです。

  • 問題文から分かる角度を全部書き出している
  • 回転する前と後の図を別々に書いている

このようにして、図形の問題は「シンプルに見る」ようにすることが得意になる早道です。

やまだ先生
やまだ先生

そうだったのね。図形の問題が苦手な人には助かるわ。

つむぎママ
つむぎママ

例題1(2)の解き方

次に、例題1(2)を見てみましょう。求めるのは、下の図の角イの大きさです。

やまだ先生
やまだ先生

う~ん、イの角度なんて求めることができるのかしら?

つむぎママ
つむぎママ

そうですよね、心配になっちゃいますね。では、下の図で分かることはありませんか?

やまだ先生
やまだ先生

黄色い三角形も青い三角形も「二等辺三角形」ね!

つむぎママ
つむぎママ

そうです、その通りです! そうしたら、図2と図4を比べてみましょう。何が分かりますか?

やまだ先生
やまだ先生

青の二等辺三角形の頂角が28°だから、底角も求められるわ!

つむぎママ
つむぎママ

図4で、角ウの大きさが (180-28)÷2=76° だから、角イの大きさは 76-46=30° ね!

つむぎママ
つむぎママ

その通りです! 二等辺三角形の回転移動の問題では、二等辺三角形がたくさんできるって覚えておくといいですね。

やまだ先生
やまだ先生

予習シリーズ算数 多角形の回転・転がり移動 例題2

例題2(1)の解き方

続いて、例題2にすすみましょう。まず(1)です。下の図で、頂点Aが動いたあとの線の長さは何cmになりますか?

やまだ先生
やまだ先生

これはカンタンね。頂点Cを中心としたおうぎ形の弧の長さになるわ。

つむぎママ
つむぎママ

その通りです、早いですね!

10×2×3.14×$\dfrac{90}{360}$=15.7(cm)が答えですね。

やまだ先生
やまだ先生

例題2(2)の解き方

次に(2)です。下の図で、辺ACが動いたあとの図形の面積は何cm2になりますか?

やまだ先生
やまだ先生

これもカンタンね。頂点Cを中心としたおうぎ形の面積になるわ。

つむぎママ
つむぎママ

はい、その通りです!

10×10×3.14×$\dfrac{90}{360}$=78.5(cm2)が答えですね。

やまだ先生
やまだ先生

例題2(3)の解き方

では(3)です。下の図で、辺ABが動いたあとの図形の面積は何cm2になりますか?

やまだ先生
やまだ先生

出発点と終点はこんな感じね。でも、そのと中はどうなるのかしら。

つむぎママ
つむぎママ

そう、今回のポイントはそこにあります! と中がどうなっているのかをしっかり自分の手で確かめることが大事です。

この問題の場合は、下の図のようになっています。

やまだ先生
やまだ先生

そうすると、辺ABが通ったあとの図形の面積は、下の黄色い部分の面積になります。この面積はどのようにしたら求めることができますか?

やまだ先生
やまだ先生

変な形ね。こんな図形の面積、どうやったら出せるの?

つむぎママ
つむぎママ

確かに、慣れてないとなかなか難しいですね。ポイントは、下の青にぬった部分の面積から、ある面積を引けば求めることができます。

やまだ先生
やまだ先生

分かったわ! 下の赤色の部分の面積を引けばいいのね。

つむぎママ
つむぎママ

その通りです、よく見抜けましたね! したがって、求める面積は、次のようになります。

10×10×3.14×$\dfrac{90}{360}$+直角三角形の面積-(8×8×3.14×$\dfrac{90}{360}$+直角三角形の面積)
=10×10×3.14×$\dfrac{90}{360}$-8×8×3.14×$\dfrac{90}{360}$
=(100-64)×3.14×$\dfrac{90}{360}$
=9×3.14
=28.26(cm2

やまだ先生
やまだ先生

結局、半径10cmのおうぎ形の面積から、半径8cmのおうぎ形の面積を引いた、ってわけね!

つむぎママ
つむぎママ

その通りです!同じ式になりますけど、次のような別解もあります。

下の図で、左の赤の斜線部分の面積と、右の赤の斜線の面積は同じになりますから、左の赤の斜線部分を右の斜線部分にうめかえるんです。

やまだ先生
やまだ先生

なるほど! そうすれば、求める面積は下の図の黄色の部分の面積になるから、初めに求めた式で同じ答えがでるのね。

つむぎママ
つむぎママ

その通りです。好きな方のやり方で解いてみてくださいね。

やまだ先生
やまだ先生

予習シリーズ算数 多角形の回転・転がり移動 例題3

例題3(1)の解き方

では、例題3に進みましょう。まずは(1)。下の図で、頂点Cが動いたあとの線の長さを求めましょう。

やまだ先生
やまだ先生

これはカンタンね。頂点Bを中心とした円の円周の長さになるわ。

つむぎママ
つむぎママ

その通りですね! 順を追って確認してみましょう。

やまだ先生
やまだ先生

5×2×3.14=31.4(cm)が答えね!

つむぎママ
つむぎママ

はい、正解です! 迷ったら、と中の図も書くといいですね。

やまだ先生
やまだ先生

例題3(2)の解き方

では、(2)です。下の図で、辺ACが動いたあとの図形の面積を求めましょう。

やまだ先生
やまだ先生

Bを中心に回転するけど、頂点Aも頂点Cも中心Bからはなれているわね。予想がつかないわ…

つむぎママ
つむぎママ

そうですね。でも、少しずつ動かしてみると、見えてきますよ。では、10°ずつ動かしてみますね。

やまだ先生
やまだ先生

どうですか、見えてきましたか?

やまだ先生
やまだ先生

ん~、まだ分からないわ…

つむぎママ
つむぎママ

分かりました。もっと動かしてみますね。

やまだ先生
やまだ先生

分かったわ! ドーナツ型になるのね。

つむぎママ
つむぎママ

その通りです! 手を動かして、と中のようすを書くことが大事です。

やまだ先生
やまだ先生

そすすると、下の図のようなドーナツ型の面積を求めればいい、ということがわかります。

やまだ先生
やまだ先生

5×5×3.14-2×2×3.14=(25-4)×3.14=65.94(cm2)が正解ね!

つむぎママ
つむぎママ

その通りです! 回転する図形の中でも、回転の中心が動かない問題は難しくありませんね。

やまだ先生
やまだ先生

予習シリーズ算数 多角形の回転・転がり移動 例題4

例題4(1)の解き方

次に、例題4です。例題4は(1)と(2)がありますが、両方一気に解いちゃいますね。

(1)下の図で、頂点Bが動いたあとの線の長さを求めなさい。

(2)下の図で、頂点Bが動いたあとの線と直線ℓで囲まれた図形の面積を求めなさい。

やまだ先生
やまだ先生

めんどくさそうで、やりたくないわ…

つむぎママ
つむぎママ

お気持ちは分かります。できればやりたくないですけど、中学受験で「図形の移動」は頻出分野なので、がまんしてやりましょう。

まず、90°ずつ動かしていきましょう。はじめ、頂点Cを中心に90°動かしますが、そのとき、その他の頂点D、A、Bがそれぞれどのように動くかを、自分の手と目で確かめることが重要です

では、まず頂点Dが動くようすを書きましょう。

やまだ先生
やまだ先生

このとき、頂点Aは次のように動きます。

やまだ先生
やまだ先生

そして、頂点Bは次のように動きます。

やまだ先生
やまだ先生

移動した後の頂点を必ず書いてください。この90°の回転移動をあと2回くり返したとき、移動後の各頂点は下の図のようになります。

やまだ先生
やまだ先生

この作業を必ず自力でやっておくことが大事ですよ!

やまだ先生
やまだ先生

わかったわ!

つむぎママ
つむぎママ

すると、(1)で「頂点Bが動いたあとの線の長さ」は下の図の弧の長さの和になります。

やまだ先生
やまだ先生

(16+20+12)×3.14×$\dfrac{90}{360}$=37.68(cm)が正解ね!

つむぎママ
つむぎママ

正解です!

やまだ先生
やまだ先生

例題4(2)の解き方

すると、(2)で、頂点Bが動いたあとの線と直線ℓで囲まれた図形の面積は、下の図で、3つのおうぎ形の面積と斜線の2つの直角三角形の面積の和になります。

やまだ先生
やまだ先生

(64+100+36)×3.14×$\dfrac{90}{360}$+8×6=205(cm2)が正解ね!

つむぎママ
つむぎママ

ご名答です!

これまでやってきたように、図形全体の動きを順序よく追っていくことが大事です。

やまだ先生
やまだ先生

予習シリーズ算数 多角形の回転・転がり移動 例題5

では最後、例題5をやってしまいましょう。例題5は(1)と(2)がありますが、両方一気に解いちゃいますね。

(1)下の図で、正三角形ABCがイの位置にきたとき、Pの位置にくるのは、A、B、Cのどの頂点ですか。

(2)下の図で、頂点Aが動いたあとの線の長さは何cmですか。

やまだ先生
やまだ先生

ひぇ~、目が回りそうだわ! でも、1回転ずつ、自分の手を使って調べていくことが大切なんですよね。

つむぎママ
つむぎママ

その通りです! まず、頂点Cを中心に回転させましょう。頂点Aと頂点Bがどのように移動するかに注目です。

やまだ先生
やまだ先生

頂点Aは、半径6cm、中心角120°のおうぎ形の弧の長さの分だけ動いたわ。

つむぎママ
つむぎママ

そうですね。さらに、頂点Aを中心として回転しましょう。

やまだ先生
やまだ先生

この場合、頂点Aは動かないのね。

つむぎママ
つむぎママ

そうです。さらに、頂点Bを中心として回転しましょう。

やまだ先生
やまだ先生

頂点Aは、半径6cm、中心角30°のおうぎ形の弧の長さの分だけ動くのね。

つむぎママ
つむぎママ

そうです。この問題では、ここの部分に注意が必要ですね。あとはカンタンなので、どんどん回転させていきますね。

やまだ先生
やまだ先生

(1)で、Pの位置にくるのは頂点Bってわかったわ。

(2)で、頂点Aが動いたあとの線の長さは、赤いおうぎ形の弧の長さを足せばいいのね。

つむぎママ
つむぎママ

その通りです! (2)は次のように計算して、計算ミスを減らしましょう。

6×2×$\dfrac{120×4+30}{360}$×3.14=53.38(cm3

やまだ先生
やまだ先生

さらに応用問題に挑戦!

今回の例題は基本レベルだけでしたので、さらに難しい応用問題に挑戦したい人はチャレンジしてください。

YouTube「クイックラーニング 中学受験算数教室」から出題です。まず、プリントをダウンロードしてください。解いてから、動画で解説を聞いてくださいね。

多角形の回転_応用問題 (201 ダウンロード )
やまだ先生
やまだ先生

今日もお疲れさまでした。予習シリーズでは、多角形を回転させた後の完成図しか書いてありませんが、この図を元にして計算しても、できるようになったことにはなりません

しつこいようですが、必ず自分の手で、回転運動の最初から最後までを書くようにしてください。

やまだ先生
やまだ先生

わかったわ。めんどうだけど、それが一番身につくということね。

つむぎママ
つむぎママ

はい! どうもうまく書けないときは、下のフォームから質問してくださいね。

やまだ先生
やまだ先生


    This site is protected by reCAPTCHA and the Google
    Privacy Policy and
    Terms of Service apply.


    スポンサーリンク

    メールアドレスが公開されることはありません。 が付いている欄は必須項目です

    CAPTCHA


    ABOUT ME
    山田正(やまだ・ただし)
    山田正(やまだ・ただし)
    中学受験プロ講師・30年以上やってます
    YouTube「クイックラーニング」、学習塾「アカデミーワン」をやっています。中学受験で疑問や不安を抱えている方に、中学受験の本質にさかのぼって、ゆるぎない受験対策ができるようにお手伝いしています。
    【著書】「中学受験は親で決まる」(2008年)「優秀な子どもが中学受験で失敗する9の理由」(2010年)
    【AERA Kids取材】「9歳10歳の危機」(1012年夏号)、「学力の差は夏で決まる」(2013年秋号)
    記事URLをコピーしました